This document gets illustrates some of the helper functions
in cimir
.
First, simply load the cimir
library:
In this vignette, we’ll use some example data from the Markleeville
station (#246). The station metadata can be retrieved with
cimis_station()
:
StationNbr | Name | City | RegionalOffice | County | ConnectDate | DisconnectDate | IsActive | IsEtoStation | Elevation | GroundCover | HmsLatitude | HmsLongitude | ZipCodes | SitingDesc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
246 | Markleeville | Markleeville | North Central Region Office | Alpine | 6/13/2014 | 12/31/2050 | True | True | 5517 | Grass | 38º46’24N / 38.773409 | -119º47’31W / -119.791930 | 96120 | |
246 | Markleeville | Markleeville | North Central Region Office | Alpine | 6/13/2014 | 12/31/2050 | True | True | 5517 | Grass | 38º46’24N / 38.773409 | -119º47’31W / -119.791930 | 96133 |
Notice that the station latitude and longitude is provided as a text
string, in both Hour Minute Second (HMMS) and Decimal Degree (DD)
format. We can extract one or the other of these formats using
cimis_format_location()
:
StationNbr | Name | City | RegionalOffice | County | ConnectDate | DisconnectDate | IsActive | IsEtoStation | Elevation | GroundCover | Latitude | Longitude | ZipCodes | SitingDesc |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
246 | Markleeville | Markleeville | North Central Region Office | Alpine | 6/13/2014 | 12/31/2050 | True | True | 5517 | Grass | 38.77341 | -119.7919 | 96120 | |
246 | Markleeville | Markleeville | North Central Region Office | Alpine | 6/13/2014 | 12/31/2050 | True | True | 5517 | Grass | 38.77341 | -119.7919 | 96133 |
Now let’s retrieve some data with cimis_data()
:
station.data = cimis_data(246, "2017-04-01", "2017-04-30",
c("day-air-tmp-avg", "hly-air-tmp"))
head(station.data)
Name | Type | Owner | Date | Julian | Station | Standard | ZipCodes | Scope | Item | Value | Qc | Unit | Hour |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cimis | station | water.ca.gov | 2017-04-01 | 91 | 246 | english | 96120, 96133 | daily | DayAirTmpAvg | 42.8 | (F) | NA | |
cimis | station | water.ca.gov | 2017-04-02 | 92 | 246 | english | 96120, 96133 | daily | DayAirTmpAvg | 45.7 | (F) | NA | |
cimis | station | water.ca.gov | 2017-04-03 | 93 | 246 | english | 96120, 96133 | daily | DayAirTmpAvg | 41.1 | (F) | NA | |
cimis | station | water.ca.gov | 2017-04-04 | 94 | 246 | english | 96120, 96133 | daily | DayAirTmpAvg | 47.0 | (F) | NA | |
cimis | station | water.ca.gov | 2017-04-05 | 95 | 246 | english | 96120, 96133 | daily | DayAirTmpAvg | 52.4 | (F) | NA | |
cimis | station | water.ca.gov | 2017-04-06 | 96 | 246 | english | 96120, 96133 | daily | DayAirTmpAvg | 48.9 | (F) | NA |
Notice that hourly data returns timestamps in two columns “Date” and
“Hour”. Furthermore, since we requested both a daily item and an hourly
item, the daily item records have NA
values for the “Hour”
column. We can collapse these columns into a single datetime column
using cimis_to_datetime()
:
Name | Type | Owner | Datetime | Julian | Station | Standard | ZipCodes | Scope | Item | Value | Qc | Unit |
---|---|---|---|---|---|---|---|---|---|---|---|---|
cimis | station | water.ca.gov | 2017-04-01 00:00:00 | 91 | 246 | english | 96120, 96133 | daily | DayAirTmpAvg | 42.8 | (F) | |
cimis | station | water.ca.gov | 2017-04-02 00:00:00 | 92 | 246 | english | 96120, 96133 | daily | DayAirTmpAvg | 45.7 | (F) | |
cimis | station | water.ca.gov | 2017-04-03 00:00:00 | 93 | 246 | english | 96120, 96133 | daily | DayAirTmpAvg | 41.1 | (F) | |
cimis | station | water.ca.gov | 2017-04-04 00:00:00 | 94 | 246 | english | 96120, 96133 | daily | DayAirTmpAvg | 47.0 | (F) | |
cimis | station | water.ca.gov | 2017-04-05 00:00:00 | 95 | 246 | english | 96120, 96133 | daily | DayAirTmpAvg | 52.4 | (F) | |
cimis | station | water.ca.gov | 2017-04-06 00:00:00 | 96 | 246 | english | 96120, 96133 | daily | DayAirTmpAvg | 48.9 | (F) |
Note that a time of 00:00:00
is used for daily
records.
The CIMIS Web API has fairly conservative limitations on the number
of records you can query at once. Large queries can be split
automatically into a series of smaller queries using
cimis_split_queries
:
queries = cimis_split_query(247, "2017-04-01", "2018-04-30",
c("day-air-tmp-avg", "hly-air-tmp"))
queries
#> # A tibble: 7 x 4
#> start.date end.date items targets
#> <date> <date> <list> <list>
#> 1 2017-04-01 2018-04-30 <chr [1]> <dbl [1]>
#> 2 2017-04-01 2017-06-04 <chr [1]> <dbl [1]>
#> 3 2017-06-05 2017-08-09 <chr [1]> <dbl [1]>
#> 4 2017-08-10 2017-10-14 <chr [1]> <dbl [1]>
#> 5 2017-10-15 2017-12-18 <chr [1]> <dbl [1]>
#> 6 2017-12-19 2018-02-22 <chr [1]> <dbl [1]>
#> 7 2018-02-23 2018-04-30 <chr [1]> <dbl [1]>
The queries can then be run in sequence using
e.g. mapply()
or purrr::pmap()
:
Note that the CIMIS API may reject your requests if you submit too many queries in a short period of time.